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establish as closely 28 possible the crash environment for poten-
tially survivable accidents,

This study discloses dats pertaining to various G levels which
occur in survivable accidents and also presents statistics on
the number of fatalities involved in survivable-type acc’ients.
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SUMMARY

Floor level deceleration data obtained in FAA crash tests of a DC-7 and
an L-1649 transport are analyzed and compared with earlier NACA data
on twin-engine transports. Generally, the comparison of the NACA and
FAA data revealed that for equal impact angles and velocities, the de-
celeration pulses as recorded by NACA and the FAA were nearly equal,
When fuselage breaks occur, deceleration values in the separated sec-
tions may exceed the deceleration level of an intact airframe, The lon-
gitudinal compressive strength of a separated fuselage section may allow
as much as 19G to be imposed on the section when one-third of the cross-
sectional area is effective in buckling.

A study of 61 survivable transport aircraft accidents in the years from
1955 through 1964 revealed the following significant points.

1. Floor deceleration pulse magnitudes and durations seldom
exceed human tolerance limits if proper body restraint is
available,

2. At least one fuselage fracture '"break' was noted in each of
35 accidents out of a total of 61 accidents studied, and these
breaks resulted in seat failures and passenger injuries in
many of these cases.

3. Two-thirds of the accidents studied resulted in a postcrash
fire.

4. It is estimated that approximately one-half of the injuries and
fatalities could have been prevented by the use of improved
passenger restraint systems.




FOREWORD

The work described in this report was conducted by the Aviation Safety
Engineering and Research (AvSER) division of the Flight Safety Founda-
tion, Inc., under the provision of Contract DA 44-177-AMC-360(T) with
the U. S. Army Aviation Materiel Laboratories, Funds for this study
were provided in ¢qual am. ...'. b the Nationa] Aeronautics and Space
Administration, the U, S, Army, the U, S. Navy, and the U, S, Air

Force. The study was guided and monitored by Mr. 1. Irving Pinkel and
Mr. Jack Enders of NASA,

The authors extend grateful appreciation to the personnel of the accident
records groups of the Tivil Aeronautics Board, the Naval Aviation Safety
Center, and the Air Force Safety Center for their assistance in selecting
and providing the orignal accident investigation records. The work

under this contract was begun in October 1964 and was completed in
October 1966.




CONTENTS
Page
SUMMARY . ... .. .. e e s e e e e e e e e e e e e e e . iii
FOREWORD. . ... ... .... .. e e e e e e e e e e e v
LISTOFILLUSTRATIONS . . . . . v ¢ v s v o v o 0 o e oo .. viid
INTRODUCTION . . . . . . v v vt v o e v o o s e e e e e e .. i
APPROACH TO THE PR(/)BLEM ................. . 1
EXPERIMENTAL CRASH TESTDATA . . . . . ¢« v v v o o v o s & 2
THEORETICAL ANALYSIS . . . . . . o v v vt v v v vt o o 0 s 7
ESTIMATES OF CRASH FORCES AND PASSENGER
SURVIVAL POTENTIAL FROM ACCIDENT STUDIES. . . . . .. 10
CONCLUSIONS . . . . i i e e e et e e e v e e o e e e ot s e 17
RECOMMENDATIONS . . . . . . s i v s vt e e v v v s o v e s ws 18
REFERENCES CITED . . . . . . v v v v 0 v v o o o o v v v o v o 39
APPENDIXES
I. Civil Transport Accidents in Which Survival Was
Possible (42 Cases) . . . . . . . .. .. ..o 0o 00 41
II. Military Transport Accidents in Which Survival

Was Possgible . , . . . . . . . ... .00 000 e e 43

DISTRIBUTION . . . . . . i v v i v e v e v v e e e e o e et ey o 45

vii




Figure

10

11

12

13

14

ILLUSTRATIONS

1L-1649 Crash Test Velocity-Time History . . . . . .
L-1649 Crash Test Velocity-Distance History ., ., . .
DC-7 Transport Crash Test Velocity-Time History .

Location of Floor Level Accelerometers for X, Y
and Z Recordings . . . . . . ... o000

Longitudinal G Values for a 6-Degree and 20-Degree

Page
19

20

21

22

Impact - Lockheed 1.+1649 Transport . . . . . . . . . 23
Vertical C Values in a 6-Degree and 20-Degree

Impact - Lockheed L-1€49 Transport. . . .. ... .. 24
Longitudinal and Vertical G Values in an 8-Degree

and 20-Degree Impact - Douglas DC-7 Transport. . . 25
Forward Fuselage Longitudinal Acceleration

Measurements in Low Angle Impacts . . . . . .. .. . 26
Illustration of a Broken Tail Section ""Digging In"

as Aircraft Breaks Up. . . . . .. e e e e e e e e . 27
Distribution of Vertical Velocity Changes -

Fixed-Wing Transport Aircraft. . . ., . . . o v ... 28
Distribution of Longitudinal Velocity Changes -

Fixed-Wing Transport Aircraft., . . . . . .. e e .. 29
Distribution of Vertical Impact Forces - Fixed-

Wing Transport Aircraft. . . . . .. .. .. ... ... 30
Distribution of Longitudinal Impact Forces -

Fixed-Wing Transport Aircraft . . . . . .. .. . ... 31
Distribution of Lateral Impact Forces - Fixed-

Wing Transport Aircraft . . . . . . . ... .. ... .. 32

viii

N i e ——— ot

r e pm—




INTRODUCTION

The objective of this study is to establish as closely as possible the
crash environment for "potentially survivable accidents". Emphasis is
placed on fixing the deceleration at the cabin and cockpit floor level and
the velocity change in the primary impact pulse,  To add significance to
these results, an estimate of the '"potential number of added survivors"
which might have resulted from improved crashworthiness of seats is
included,

APPROACH TO THE PROBLEM

The floor decelerations can be obtained by several methods:
1. Instrumented crash tests of full-scale and sub-scale
components, (This methnd will yield the most accurate
results, )

2. Theoretical analysis.

3. Estimates made from accident investigations.

The results of all three methods are used in this study.




EXPERIMENTAL CRASH TEST DATA

LONGITUDINAL FLOOR DECELERATIONS

Longitudinal floor deceleration levels in actual aircraf* crashes vary

with impact angle, impact velocity, terrain composition, and aircraft

rigidity. The National Aeronautics and Space Administration (formerly ‘
National Advisory Committee for Aeronautics - NACA) has made a

thorough evaluation of impact angle variation, 1, 2 Crash tests were con-

ducted on aircraft at pitch angles up to 50 degrees, The NACA data, as "
presented on page 64 of Reference 2, indicated that longitudinal deceler-

ations varied from 5G at a 5-degree impact angle up to as high as 50G

at impact angles above 45 degrees. The NACA data were recorded in

light single-engine planes, in fighters, and in C-46 and C-82 transports

at impact velocities up t~ 112 'miles per hour.

The recently completed four-engine (Douglas DC-7 and Lockheed L-1649)
transport crash tests conducted for the Federal Aviation Agency (FAA)
by the Flight Safety Foundation indicate longitudinal floor decelerations
about equal to those of the NACA tests for equal impact angles and im-
pact velocities, 3,4

Since the FAA crash tests of the DC-7 and L-.649 aircraft were con-
ducted at several impact angles (6 degrees, 8 degrees, and 20 degrees),
an analysis of this new data is included for comparison with the earlier
NACA data. The DC-7 and L-1649 transport velocity.-time and distance-
time calculations, made from tests described in References 3 and 4, are
presented in Figures 1, 2, and 3. The L-1649 velocity and distance-
versus-time data for the entire impact sequence are shown in Figures |
and 2, These curves show the major velocity changes which occur on the
6-degree and 20-degree slopes. Note that the maximum slopes of the
velocity-time curve occur at about 1. 05 and 3. 2 seconds, respectively.
Both slopes indicate an average deceleration of about 5G. This 5G

value {5 based upon the center-of-gravity movement of the airplane as
determined by high-speed ground camera analysis. The L-1649 floor-
mounted accelerometers along the fuselage centerline (see Figure 4) in-
dicate that the maximum deceleration values vary from 7G to 20G, as
shown in Figure 5. Only the major decelerative pulses in the 6-degree
and 20-degree impacts are recorded in Figure 5,

It will be noted in Figure 5 that the times plotted are 0. 10 second less

than the times shown for the same data in Reference 3. This difference
results from the selection cof main landing gear impact as time zero, as
noted in Figures 5 and 6. Reference 3 uses propeller impact as time

zero,




Several observations are pertinent in comparing the longitudinal G levels
of the L-1649 airplane with those of the NACA transport tests:

6-Degree Impact (1-1649)

1. The maximum G level recorded in the 6-degree impact varied
from about 11G in the nose to about 8G in the rear of the cabin,
if the short duration (0,010 second or less) spikes are ignored,
These G levels are significantly higher than the 2, 5G recorded
in the C-46, 5-degree (119 feet per second) NACA test.

2. The maximum deceleration in the L-1649 test was about four
times as great as that for the C-.46; however, the pulse dura-
ation was shorter, The velocity changes for the two aircraft at
equal impact angles were about the same,

3. The time at which maximum decelerations were reached varied
by about 0. 015 second between the nose and rear section of the
cabin; i. e., the rear section peak G lagged the nose section by
0.015 second. * This same trend was also noted in the NACA
C-46 tests at 15- and 29-degree impact angles.

20-Degree Impact (L-1649)

. The maximum G level recorded in the 20-degree impact varied
from 19G in the nose to about 8G at the four locations aft of the
nose. All the evidence indicates that this difference was
caused by a buckling collapse of the cabin section at the for-
ward break location shown in Figure 4. The eutire nose sec-
tion was pushed upward about 3 to 4 feet relative to the aft
fuselage section. The structure in the vicinity of this fuselage
then provided a 'plastic’” connection between the forward and
aft fuselage, allowing a low-level deceleration of the aft sec-
tion. Had the aircraft impacted on a greater siope, or at a
higher velocity, the remainder of the cabin undoubtedly would
have experienced a higher deceleration than was recorded in
this case. It is conciuded that the nose section provided
enough energv absorption in this impact to prevent the aft fuse-
lage G levels from exceeding thosc recorded in the 6-degree
impact.

* The longitudinal time base as recorded in Figure 6-3 of Reference 4 is
inerror by 0,075 second. All times are 0, 075 second higher than they
should be at fuselage station 460.




2, The time at which maximum G levels were reached varied
about 0. 25 second between the nose section and the other loca-
tions, This difference was caused by the collapse of the
structure at fuselage station 350, which allowed the aircraft to
move forward some 20 to 22 feet before the center fuselage
body at the '"break' point made full contact with the 20-degree
slope, as illustrated in Figure 4, The center and aft fuselage
reached its maximum deceleration at this time., This test in-
dicates clearly that the several sections of a passenger cabin
may be decelerated at different levels if the cabin structure
breaks up during the crash sequence,

The Jongitudinal decelerations at the floor level in the DC-7 transport
crash test were obtained in the cockpit area only. A review of the ve-
~ locity-time curves in Figure 3 indicates an average 8-9G deceleration
in the 8- and 20-degree - impacts, It will be noted in Figures 3 and 7
that the times plotted are 0. 10 second less than the times shown for the
same data in Reference ¢. The main landing gear impact was chosen
for time zerc in this study,

The longitudinal deceleraticn-time trace for the cockpit is shown in
Figure 7 for the 8-degree anrd 20-degree impacts, Maximum decelera-
tions of 15G and 28G are shown, respectively, for the two impacts., A
review of these data permits the following observations and conclusions:

8-Degree Impact (DC-7)

I. The 15G maximum cockpit reading is ap_ .oximately 50 percent
greater than that of the [.-1649 transport for a 6-degree im-
pact. The larger initial impact velocity of 235 feet per second
rather than 155 feet ger second was undoubtedly a contributing
factor to the nigher G level.

2. Although the forward fuselage did fracture at a point about 400
inches afi of the nose (fuselage station 300) during the impact,
all eviden-e indicates that the fracture was initiated by a pro-
peller blade slash through the right side at that station. It is
possible that the fuselage would have remained intact during
this impact if the propeller blade had not penetrated the
structure,

20-Degree Impact (DC-7)

The maximum G level in the cockpit was about 28G, as shown by the
averaged trace in Figure 7. The inward crushing of the cockpit was

4
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severe enough to preclude survival of the pilot and copilot; however, the
passenger compartment forward of the fuselage break point was not
crushed extensively in the 20-degree impact and was thus a potentially
survivable area.

VERTICAL FLOOR DECELERATIONS

The vertical floor decelerations for the 1.-1649 and DC-7 transports are
shown in Figures 6 and 7, respectively, The vertical deceleration-time
traces at stations 923 and 1165 for the L-1649 aircraft are not included
in Figure 6 because the levels were much lower than those in the forward
fuselage. It can be seen that the peak G values in the L -1649 cockpit are
about 20 and 30G, respectively, for the 6-degree and 20-degree impacts,
while the fuselage station 685 (c.g.) deceleration is rejatively low at
about 7G maximum. This large difference is to be expected in nose-low
impacts because of the rapid vertical velocity change which must occur
at the nose when contact is made. The velocity changes in the cockpit
were about 35 and 55 feet per second, respectively, for the 1-1649 and
DC-7 in the 6-degree and 8-degree impacts.

LATERAL FI1.OOR DECELERATIONS

Neither the L-1649 nor the DC-7 crash tests were intended to produce
significant lateral forces. Minor lateral forces up to about 9G peaks
were noted in both aircraft after the nose section breaks occurred; how-
ever, the duration of these decelerations did not exceed 0. 03 seconc.

COMBINED FLOOR DECELERATIONS

The L-1649 and DC-7 data indicated that the maximum decelerations oc-
curred along the three axes simultaneously.

DECELERATION PULSE SHAPES

A review of the NACA and FAA longitudinal, vertical, and lateral pulse
data indicates that a symmetrical, triangular shape will simulate the
measured pulses in the majority of the tesrs. Until more data are
gathered on various aircraft types, it appears feasible to use this pulse
shape for aircraft seat testing.

INITIAL IMPACT VELOCITY EFFECTS

Less experimental data are available on the effect of impact velocity
than are available on impact angle. The majority of the NACA aircraft
were impacted at velocities between 80 and 112 miles per hour, while

5




the 1.-1649 and DC-7 tests were conducted at 129 and 160 miles per hour,
respectively. In an effort to determine the effect of impact velocity on
longitudinal flcor deceleration at equal impact angles, the applicable
data from the NACA and FAA tests are compared as shown by tl. . curve
in Figure 8. This figure shows that the initial impact velocity varied
between 80 and 160 miles per hour. All of the aircraft were impacted on
compressed soil without obstructions, An increasing longitudinal G
value with increasirg impact velocity is indicated, although the curve
appears to be leveling off at the higher velocities, Aircraft weight ap-
pears to have little effect on longitudinal G level,

MISCELLANEOUS EFFECTS

Aircraft rigidity, as used in regard to longitudinal floor deceleration,
is a measure of the aircraft's resistance to deformation. The more
rigid aircraft structure should offer greater resistance to deformation
and for equal weight should be expected to yield a higher G level than a
less rigid structure. An insufficient number of crash tests have been
conducted to evaiuate this factor experimentally. Theoretical calcula-
tions to determine the longitudinal resistance to deformation (crushing
strength) of several transport fuselages are discussed in the next
section.

The type of terrain onto which an aircraft impacts will probably affect
deceleration levels; however, little experimental data on the effect of
terrain are available, All of the NACA crashes were conducted on pre-
pared soil. No instrumented tests have been conducted to determine the
effect of impacts onto water, sand, rocks, trees, or pavement., Soft-
soil impacts probably yield higher decelerations due to the '"plowing"
action, Some preliminary results have been obtained on the effacts of
"plowing' for a small, twin-engine (20-ton) aircraft. 5 Further work in
this area should yield more precise data for larger aircraft.
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THEORETICAL ANALYSIS

INTRODUCTION

Only limited experimental data are available on the floor level decelera-
tions for large, modern, transport aircraft. This theoretical analysis
is presented to fix the probable limits of the fuselage to deceleration as
determined by the fuselage buckling loads.

It is assumed that only about 1/4 to 1/3 of the fuselage shell cross-
sectional area would ever be greatly compressed other than in very

steep angle impacts, Only the skin and longerons below the floor line
were thus assumed to be effective in compression. The compression
strength of the floor was not considered, A transport powered by four
jet engines and a transport powered by four piston engines were analyzed,

FUSELAGE CROSS-SECTIONAL ANALYSIS

The fuselage cross section used for the analysis was located just aft of
the wing-to-fuselage intersection for both aircraft; however, the exact
location is relatively unimportant, since the total area of the skin and
longerons does not vary greatly in the constant-geometry section of the
fuselage. Figure 9 illustrates a DC-7 tail section being decelerated as
assumed in this analysis.

The resultant deceleration levels for a tail section loaded with a half
load and a full load of passengers and baggage are presented in Table I.

TABLE 1
FUSELAGE STATIC COMPRESSIVE STRENGTH FOR
LOWER ONE.-THIRD OF SHELL

Four-Engine Four-Engine
Piston Transport Jet Transport

Compression Capacity, 1b 350, 000 432,000

Resultant Deceleration 19 15
(Half Passenger Load), G

Resultant Deceleration 16 13
{Full Passenger Load), G




At least three survivable accidents have occurred to a four-engine piston
transport whose fuselage cross-sectional geometry was identical to that
of the piston transport analyzed above, Itis interesting to note that the
tail section broke free from the forward fuselage at a corresponding
location (the same distance forward from the rear pressure bulkhead) in
all three accidents, About half of the passengers in the torn-free tail
sections of the three transports survived. It is concluded, therefore,
that fuselage breaks in aircraft crashes need not be catastrophic if pas-
sengers are properly restrained in the separated sections,.

A similar compressive strength analysis was conducted by the Convair
Division of General Dynamics Corporation for the Federal Aviation
Agency on a twin-engine transport and a four-engine je.. In this analysis,
the lower half of the fuselage was assumed to be effective rather than
just the area below the floor level. The Convair results are included in
Table II for comparison purposes,

TABLE II
FUSELAGE COMPRESSIVE STRENGTH FOR
LOWER ONE-HALF OF SHELL

Twin-Engine Four-Engine
Piston Transport Jet Transport

Compression Capacity, lb 251, 000 676, 000

Resultant Deceleration 28 29
(Half Passenger Load), G

Resultant Deceleration 21 21.5
(Full Passenger Load), G

it can be seen that the Convair G values are about 50 percent greater
than those shown in Table I, but this is to be expected since one-half of
the fuselage cross section was assumed to be effective rather than about
,one-third, It is significant that the structural G limits as calculated for
aircraft varying in gross weight from 45, 000 pounds for the twin-engine
transport up to 300, 000 pounds for the four-engine jet do not vary
greatly,
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The tail section need not break away from the forward fuselage, as illus-
trated in Figure 9, for it to be subjected to its structural deceleration
limits, In steep-angle impacts (15 degrees or greater) with modern
long-nosed aircraft, it appears probable that the forward fuselage will
break at the wing intersection and thus permit the center section fuse-
lage to dig in and "plow". The plowing, of course, could cause structural
limit decelerations on the remainder of the fuselage.
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ESTIMATES OF CRASH FORCES AND PASSENGER SURVIVAL
POTENTIAL FROM ACCIDENT STUDIES

BACKGROUND

’

Although estimates of crash forces and injury causation factors are very
difficult to obtain from accident histories, a careful study of competent
investigators' notes on a sizeable number of accidents can yield useful
trend information where the study considers existing test data as a
"yardstick' for the derived estimates, For transport aircraft, "yard-
stick' test data bave been obtained by the NACA and FAA on piston-
powered, pressurized aircraft uF to a gross weight of 80 tons at several
impact angles up to 29 degrees. *» 2, 3, 4 Since the majority of surviv-
able accidents have occurred in piston-powered transports, the avail-
able accident history information is generally comparable with the test
data,

Crash forces can also be estimated on the basis of failure or nonfailure
of passenger restraint systems (seats and associated attachment fittings)
which are designed to specified static strength levels, because it is
known that the dynamic strength of materials is about the same as the
static strength for the loading rates experienced in aircraft accidents.
For example, in the FAA crash test of the L-1649 transport, 4 the peak
longitudinal floor deceleration was 10-15G in the forward part of the
cabin, and the standard commercial 16G-static-strength seats did not
fail in the test. * Thus, a postcrash analysis of this accident would have
suggested that the seats sustained a longitudinal force of less than 16G,

The statistical information presented herein has been obtained by a study
of transport aircraft accidents with particular emphasis on crash forces,
passenger injuries, and the number of injuries which might have been
prevented by the use of improved occupant restraint systems,

*Although these seats were required to withstand only a 9G static loading
with floor fittings capable of sustaining 12G in accordance with FAA
Technical Standard Order No. 39, the actual failure load determined by
static tests was about 16G for the triple passenger seats with 170-pound
passengers,

10




TYPES OF ACCIDENTS STUDIED

Aircraft accidents can be logically grouped into three classcs as follows:

1. Minor impact forces - These include taxiing collisions,
landing gear failures after touchdown, or any other impacts
in which the decelerative forces on the occupants do not ex-
ceed about 4G,

2, Moderate to severe impact forces - These include accidents
in which the aircraft strikes terrain at approach/landing
speeds in which the decelerative forces are in excess of 4G
but are not greater than human tolerance levels.

3. Catastrophic impact forces - These include accidents in
which the aircraft's vertical velocity is excessive (100 feet
per second or more) or in which G forces are in excess of
human tolerance.

Accidents falling under class (2) were selected for this study. Contact
was made with the Civil Aeronautics Board and the military safety
centers to obtain permission to review original accident irvestigation
notes, photographs, and other data not normally included in formal ac-
cident reports, Class (2) accident cases were selected for study from
the above sources after a review of all accidents, Only accidents meet-
ing the following limitations were used in the study:

1. Aircraft weight was greater than 10 tons,
2. Aircraft was multi-engined,

3. At least on= person was injured in the accident to the extent
that he was (a) hospitalized for 24 hours and/or (b) received
bone fractures, excluding toes, fingers, and nose, '

4. At least one person did survive the accident, or at least con-
clusive evidence indicated that survival would have been pos-
sible if proper body restraint had been used. The fact that the
fuselage structure was not crushed to the extent to preclude
survival was taken as one indication that survival should have
Leen possible, The severity of the accident, including esti-
mated velocity change, impact angle and estimated G levels,
provided further evidence of survival potential.
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ACCIDENT DATA COLLECTION PROCEDURE

In order for the study to be statistically significant, a 10-year span for
the years 1955 through 1964 was selected for accidents investigated by
the Civil Aeronautics Board, The military accidents were selected for
the years 1962 through 1965 because the older case histories were not

readily available,

Detailed work sheets were prepared for use with each accident case, and
a visit was made to the Naval Aviation Safety Center at Norfolk, Virginia,
and the U, S, Air Force Safety Center at Norton Air Force Base, Cali-
fornia, as well as the CAB in Washington, D, C,, so that a detailed re-
view of photographs, wreckage distribution charts, original notes, and
other data could be conducted. A portion of the original data collected
is summarized in Appendixes I and II for the civil and military trans-
ports, respectively. Note that a total of 61 aircraft are included in this
study. These tables are self-explanatory and provide an estimate of the
following:

1. Type of aircraft,

2. Aircraft attitude at time of major ground impact,

3. Aircraft velocity at major ground impact,

4. Impact angle (angle between flight path and terrain slope).

5. Total deceleration distance (distance moved after first terrain
contact).

6. Total persons aboard.
7. Crew injuries,
8. Passenger injuries.
9. Occurrence of postcrash fire,
10, Terrain condition.
It must be realized that the kinematic data presented are not exact in
some cases, but an effort has been made to bracket the correct value by

indicating upper and lower limits. For propeller-driven aircraft, the
distance between prop marks in the terrain is matched to engine power

12
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settings to reveal a good estimate of initial impact velocity, For jets,
the flight recorder indicates flight speed, sink rate, and the initial
vertical G level upon impact.

The accident cases listed in Appendixes I and II were further studied in
order to estimate the crash forces during the major pulses, This was
done by comparing each accident case with an equivalent aircraft which
had been crash tested under similar conditions, All four-engine air-
craft were thus compared with the FAA crash tests of the 1.-1649 and
DC-7, 3, 4 while all twin-engine aircraft were compared with either the
NACA Lodestar, C-46, or C-82 transport crash tests, Consideration
was also given to the failure or nonfailure of passenger seats in esti-
mating the average G values, The estimated velocity changes and aver
age G levels are presented in Tables III, IV, V, VI and VII,

The velocity and crash force data in the tables are further reduced and
presented statistically in Figures 10 through 14, These curves enable
the reader to determine the crash forces and velocity changes in
survivable accidents on the basis of probability.

DISCUSSION OF CRASH KINEMATICS AND KINETICS

A review of the data in Tables III through VII and Figures 10 through 14
reveals the following pertinent points:

1. There is a large difference between the average (50th percen-
tile) impact conditions and the 95th percentile conditions.

2. It is probable that an average longitudinal deceleration of 13G
or less will occur in 95 percent of all potentially survivable
crashes,

3. It is probable that vertical G values of 18G average or less
will occur in 95 percent of survivable accidents,

4. Lateral decelerations are not expected to ¢xceed an average
value of 8G in 95 percent of survivable accidents.

5. Horizontal velocity changes in the major impact pulses are not
expected to exceed 64 feet per second in 95 percent of surviv-

able crashes,

6. Vertical velocity changes are not expected to exceed 36 feet
per second in 95 percent of survivable crashes.
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The deceleration pulse magritude and duration for the 95th
percentile accident severity are not expected to exceed human
tolerance limits longitudinally; however, some spinal column
injuries may occur due to vertical pulses for the 95th percentile
accident severity if energy-absorbing methods are not used

in the seats, '

A fuselage structural break occurred in at least one location
in 35 accidents out of 61 (58 percent of the total), For impact ,
angles greater than 10 degrees, 11 of the 16 accidents (68 per- (
cent) listed resulted in fuselage fractures. These facts suggest
that more consideration should be given to the probability of
fuselage fractures in survivable crashes,

PASSENGER INJURIES

The cases listed in Appendixes ]I and II were also studied to determine
injury causes, This analysis was undertaken to be able to estimate the
number of persons that might have survived the accident with only minor

injuries,

The number of potential survivors was determined for each

accident on the basis of the following limitations:

1.

Accidents with estiinated floor longitudinal or vertical decel-
erations in excess of an average 25G were considered to be
nonsurvivable because human tolerance limits with seat belt
restraint only would probably have been exceeded.

Accidents in which excessive crushing of fuselage structure in
occupiable areas occurred were considered to be nonsurvivable
in those areas. For example, those cases in which seats were
located over or near ""break'" points in the fuselage were con-
sidered to be nonsurvivable, regardless of seat faiiures.

The fatality and injury data are presented in Tables III, IV, V, VI and
VII. These tables include the following:

I,

Total persons aboard.

Total fatalities.

Total survivors.

Total survivors without serious injury.

Potential additional survivors withoul serious injuries.
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The commercial transport cases were divided into impact angle incre-
ments between 0 and 5 degrees, 5 and 10 degrees, and 10 degrees or
more, and the data are presented in Tables III, IV, and V, respectively,
The same procedure was followed with the military cases except that the
5-to-10-degree range was omitted because of insufficient cases. The
military accidents are listed in Tables VI and VII,

The "potential additional survivors' column in the tables shows the
number of passenger and crew fatalities and seriously injured persons
who probably could have survived with only minor injuries. In some
cases, where insufficient injury information was available, a range of
potential survivors was listed. In the majnrity of cases, fatalities and
serious injuries were attributed either directly or indirectly to inade-
quate restraint. Fatalities were caused in several accidents by occu-
pant inability to open jammed exits before postcrash fires consumed the
fuselage (reference case 26); however, in this and similar cases, it was
assuincd that improved passenger restraint would not have prevented
fatalities, and no possible survivors were added.

There are 3 accidents listed in Tables III, VI and VII in which the total
fatalities due to fire are "unknown', A total of 23 fatalities occurred in
these 3 accidents, some probably due to fire and some due to impact
alone. It is possible that some of these passengers might have survived
in the absence of fire, however, these are not shown in the "potential
additional survivors' column.

Postcrash fires occurred in two-thirds of the 61 accidents reviewed,
and fire caused 46 percent of all fatalities. In almost all cases, the
cause of fire was a ruptured fuel tank due to wing failure, The primary
effects of postcrash fires in civil transport accidents during the period
of this study are reported in References 7 and 8,

STATISTICAL SUMMARY OF PASSENGER INJURIES

The following pertinent injury facts may be obtainea by a review of
Tables III through VII.

One thousand six hundred sixty-seven persons were on board the air-
craft involved,

Two hundred ninety-six persons received serious injuries (18 percent of
total),

15

o b P 1

o




Seven hundred forty-one persons were fatalities (44 percent of total),
Three hundred forty of these were caused by fire while the remainder
were caused by impact injuries,

Six hundred thirty persons received minor or no injuries (38 percent of
total).

Somewhere between 340 and 520 additional persons could have survived
the accidents without serious injuries (i.e., between 33 and 50 percent
of the 1037 fatalities and seriously injured persons might have survived
with minor or no injury if improved restraint systems had been used).

Thirty-three aircraft crashed at impact angles of 5 degrees or less
(54 percent of total).

Twelve aircraft crashed at impact angles from 5-10 degrees (20 percent
of total).

]

Sixteen aircraft crashed at impact angles greater than 10 degrees (26
percent of total),

Forty accidents resulted in postcrash fire (two-thirds of total).
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CONCLUSIONS

It is concluded that:

1. The 95th percentile accident will result in a cockpit floor
longitudinal deceleration pulse which is approximately a sym-
metrical triangle with a 25G peak and a velocity change of 64
feet per second. Cockpit seats should be designed to these
values.

2, Cabin seats shoula be designed to at least 80 percent of the
95th percentile (cockpit) G level, This results in 20G at the
floor. The 95th percentile longitudinal velocity change (64 feet
per second) should be the same as in the cockpit area,

3. Seat failures in many accidents are caused by floor distortion
at the leg-to-floor attachments rather than by excessive G
loads. Improved leg-to-floor attachments would prevent many
of the seat failures,

4, A study of 61 survivable aircraft crashes indicated that nez.ly
half of the 1037 fatalities and serious injuries which occurred
could probably have been prevented by the use of improved re-
straint systems. Reduction of postcrash fires would reduce
the fatality and injury rate still further,

5. Fuselage fracture "break'' points, which occurred in 35 of the
61 accidents studied, result in injuries and fatalities when pas- ‘
senger seats are located over these points.

17




RECOMMENDATIONS

It is recommended that:

1.

Crash force studies of actual aircraft accidents be continued,
Dynamicists working alongside CAB and military accident
investigation teams could gain invaluable crashworthiness
information in selected accidents.

Consideration be given to locating passenger seats away from
expected fuselage "break' or fracture points so that the pas-
senger's restraint system remains intact when fracture of the
fuselage occurs,

Provision be made for relative rotation of the seat legs with
respect to the aircraft floor.

Cockpit seats be designed to the 95th percentile conditions pre-’

sented in Figures 10 through 14 of this report.
Cabin seats be designed to the 95th percentile velocity cha;xge

(64 feet per second) and at least 80 percent (20G Iongitudinal)
of the 95th percentile deceleration,

18
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Figure 8. Forward Fuselage Longitudinal Acceleration
Measurements in Low Angle Impacts.
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APPENDIX 1
CIVIL TRANSPORT ACCIDENTS IN WHICH SURVIVAL WA

AIRCRAFT ATTTIUDE IMPACT CONDITIONS CREW INJURIES PASSE}
“Total
Type Impact Decel Miror
Ref Alr- Pitch Roll Yaw Vel Angle Dist Total Seri- or
No. craft bate {Deg.) (Deg.) (Deg.) (Rn.) (Deg.) (Ft.) Aboard Fatai ous None Fatal
1 Ccv-240 Mar. 55 1-2D 5R None 120 7-8 750 3s 2 1 0 11
2 Convair 340 July 55 2-5D 5=7R 10-20R 120 10 900 43 2 1 0 20
3 c-54DC Nev. 55 10-150 0 None 90 3.5 650 74 1 0 3 27
4  Lockh,.L749 Dec. 55 Level 1R - 140 2.5 360 17 5 (1] 0
5 Martin 404 Feb. 56 1-3U 5-16R  None 90 3-5 900 23 0 0 3 0
6 Martin 404 Apr. 56 - 5L - 100 - 240 36 1 2 0 21
7 DC-6B Aug. 56 - 15L - 186 - 1500 22 4 3 1 11
8 Cenvair 240 Jan. 57 Level 0 0 120 7 540 10 0 2 1 1
9 DC-6A Feb. 57 level 19L 8L 138 ? 1500 101 0 3 3 20
10 DC-4 May 57 0-20 0 0 1406-160 - 4¢3 2 i1 0 -
11 pC-3 Sep. 57 30D 90R 25R 65 8 145 24 2 1 0 10
12 Dc-7C Mar, 58 0-5D 20R 0 175 7 1500 24 0 3 2 9
13  bpC-3 June 58 30D 80R - 65 - 30-50 3 1 2 0 -
14 Coaveir 240 Aug. 58 17D 180 - 130 13 1100 34 3 0 0 22
15 DC-6B Aug. 58 level - 0 155 1-2 1300 82 0 1 3 0
16 DC-3 Feb. 59 Level 10L - 70 5 208 28 2 1 0 1
17  Electra Fed. 59 Llevel 2-3r 0 135 2-3 - 73 2 3 0 63
18 Convair 240 Mar. 59 Level 2R - 120 2,5 500 2 0 0 2 -
19  C-54G Oct. 59 Llevel 2-3L - 75 25 360 2 0 1 1 -
20  Boeing 707 Oct. 59 .0-15D 5SSL 5-15L - 12 350 8 3 0 0 i
21 DC-3 Oct. 5° 20-30D 8-12L - 70 - 80-100 19 1 1 1 0
22  DC-6AB Sep. 60 10U SR 0 150 9 975 94 7 1 0 73
23 C-46F OCct. 60 - 67-90L - S0 2-5 215 48 2 0 1 20
26 Electra II Oct. 60 70-75D B80-85L - 100 60-80 40-70(d) 72 3 2 0 59
25 C-46 July 61 Level 2L 0 70-80 ¢ 1000 2 0 1 1 -
26 lockh., 045E Nov., 61 Level 10R 0 90-95 8-10 100 79 3 0 2 74
27  Lockh. 1049H Mar. 62 Level - - 120 2-3 00 7 1 0 6 -
28 Brltannia 314 July 62 2-3D 10-20L - 115 1-2 680 40 7 4 0 20
29 Lockh. 1N49H Sep. 62 Le-i1 0 - 100 2-2 - 76 5 1] 3 23
30 DC-7u Nov. 62 3 6L 0 124 2 900 51 4 2 0 21
31 Convair 340 Dec. 62 leve:. 2-5L 6R 115 5 1275 42 0 1 2 9
32 F-27 Jar, 62 Level O 0 110 11 - 3 3(a) O 0 -
33 viscount 812 Jaa. 63 22D 0 0 i5¢ 30 600 8 3 0 0 5
34  Lockh, 1049 Feb., 63 5D 5L - e 12.5 800 8 2 1 0 2
35 C-46F Feb. 63 20D 30L - 89-990 - 219 2 0 2 0 -
36 Martin 404 July 63 35D(b) 90-135L 206-30L 90-9L 1 175 43 2 1 0 5
a7  c-46 Aug. 63 3-5U 0 o 80 1-2 750 2 1 1 ¢ -
38 F-27 Aug. 63 Level 0 0 88 5 800 15 0 0 3 0
39 DC-3 Nov. 63 -~ - - 100 10 550 3 1 1 1 -
4) DC-3A Mar. 64 Level 0 0 70-80 1-2 120 30 1 1 0 0
41 DC-3C Mar. 64 40 6L - 100 20 61G(c) 5 3 0 0 2
42  Boeing 707 Apr. 64 1-2D 0 1-2R 20-30 35-45 2-4 145 n 1 8 0
43  C-4b Dec. 64 Level 18C - 110 8 850 4 2 0 0 2

S

a. Crew survived crash, exited the aircraft, and died due to freezing water exposure.

b. Aircrart shredded left wing over 163 feet before nose impacted ground (35-degree pitch was main impact
¢. Aircraft bounced off the top of two hills and came to rest on third hili. The 610 feet includes 300 f
d, This estimated distance based on water depth and forward fuselage deformation. |
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| APPENDIX I
S IN WHICH SURVIVAL WAS POSSIBLE (42 CASES)

h=
CREW INJURIRS PASSENGER INJURIES
Minor Minor Post-
g Total Seri- or Seri- or crash
S Abcard Fatal ous None Fatal ous None Fire Terrain Conditions
as 2 1 0 11 20 1 No Plowed field.
43 2 1 0 20 11 9 Minor Grass field with obatacles.
$74 1 0 3 27 0 43 Ves Residential street - pavement.
* 17 5 0 0 12 0 0 1e8 Packed earth.
23 0 0 3 0 1 19 No Gr&ss ~overed ground.
36 1 2 0 21 5 7 Yes Firm ground.
22 4 3 1 11 0 3 Yes Unknown,
10 0 2 1 1 3 3 No Unknown.
101 0 3 3 20 25 50 Yes Hard frozen earth,
3 2 1 ¢ - - - Yes Icecap.
24 2 1 0 10 11 0 Minor Forest.
24 0 3 2 9 7 3 Yes Swamp with jagged rock.
3 1 2 0 - - - Yes Soft sandy ground.
34 3 0 (4] 22 9 0 Yes Soft forest ground.
62 0 1 3 0 18 40 Yes Unknown .,
28 2 1 0 1 3 21 Yes Firm forest ground,
g 73 2 3 0 63 3 0 No Water (unintentional).
2 0 0 2 - - - Yes Rard ground (railroad yard).
2 0 1 1 - - - Yes Edge of lake,
3 3 0 0 1 1 3 Yes Along river edge.
19 1 1 1 0 1 5 No Hard ground.
54 7 1 0 i3 9 4 Yes Jungle - low vegetation.
48 2 0 1 20 10 15 Yes Hard packed ground.
g) 72 3 2 0 59 8 0 No Stalled and fell into shallow water.
K 2 0 1 1 - - - No Runway .
79 3 0 2 74 0 0 Yes Dense woods.
7 1 0 6 - - - Yes Earth embankment (gear).
40 7 4 0 20 2 7 Yes Hard ground.
76 5 0 3 23 0 45 No Water (intentional).
51 4 2 0 21 12 12 Yes Hard ground side of runway.
42 0 1 2 0 0 40 Yes Hard frozen ground.
§ 3 3(a) O 0 - - - No Water (unintentional).
3 0 0 5 0 0 Yes Packed earth.
2 1 0 2 3 ¢ Yes Concrete runway.
0 2 0 - - - Yes Meadow.
2 1 0 5 29 6 Minor Edge of vunway, grassy sod, in driving rain.
i 1 0 - - - No ?lowed field.
0 0 3 0 2 10 Unk Tknown.
1 1 1 - - - No Dense woods.
1 1 0 0 0 28 No Unknown.
3 v} 0 2 0 0 Yes Hard ground.
0 1 8 0 14 122 No Shallow water-embankment .
2 0 0 2 0 0 No Farmland.

ter exposure.

ormation.

(35~-degree pitch was main impact).
111. The 510 feet includes 3C0 feet of airborne distance.




APPENDIX 1I
MILITARY TRANSPORT ACCIDENTS IN WHICH SURVIVAL WA{

AIRCRAFT ATTITUDE IMPACT CONDITIONS —~ CREW INJURIES PASSENGER
Type Impact g:i:i Minor
Ref Air- Pitch Roll Yaw Velocity Angle Dist Total Seri- or Serid
No. craft Date (Deg.) (Deg.) (Deg.) (Kn.) (Deg.) (Ft.) Aboard Fatal ous None Fatal ous
1A C-47D 1962 30up 0 0 80 30 348 7 0 0 2 0 3
24 C-47D 1962 20-30up O 0 90-105 10-20 - 8 1% 1 2 0 0
3A C-47A 1962 5-10up 60L - 60-70 5-10 200 7 3 0 0 4 0
4A  KC- 1962 5-1Gup 20L 9L 170-180 5 1000 6 6% 0 0 - -
135A
S5A C-140 1962 2-3up 2-3R O 175 10-15 1000 6 2% 1 0 3% 0
6A C-121G 1962 Level O 0 120 3-5 1900 8 3 5 0 - -
7A  C-131E 1963 10-15up 20R 2-5R 123 12-15 300 20 1 1 2 0 2
84 KC- 1963 - 0 - 130-150 2-5 150 4 1 0 3 - -
135A
9A C-47D 1963 Level 0 0 100-120 1-2 393 4 0 0 4 - -
10A C-123B 1964 2-5d 0 2-4L 70 10-15 300 8 4 1 3 - - 1
114 C-135B 1964 2-4up 2-3L 0 150 2-3 1640 83 5% 5 0 13> 0
12A  KC-97G 1964 ¢-5d 10R - 120 2-5 1400 5 5% 0 0 - -
13A KC-97G 1964 5-10up O 0 105 20-30 200 11 0 1 3 4 2
14A  VvC-47D 1965 2-5up - - 70 2-3 350- 36 0 0 5 0 4
400
154 C€-130a 1965 Level 1-5L 1-3R 130 1-3 Water 10 2 1 2 2 3
16A C-123B 1965 Llevel O 0 100 2-5 250 7 0 2 2 0 2
17 C-54Q 1964 5-10d 5R - 130 5 380 8 5 1 0 1 1
18N fgix 1963 Level O 10L 15-25 20-30 10-20 7 0 2 1 0

*All fatalities had elevated.CO-levels in blood samples.
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APPENDIX II
IDENTS IN WHICH SURVIVAL WAS POSSIBLE

CREW INJURIES PASSENGER INJURIES
Minor Minor Post-
Seri- or Seri- or crash
Fatal ous None Fatal ous None  Fire Terrain Conditions
0 0 2 0 3 2 No Frozen earth.
1* 1 2 0 0 4 Yes Frozen earth,
3 0 0 4 0 0 Yes Runway and firm‘ grassy soil.
6% 0 0 - - - Yes Heavily wooded area.
2% 1 0 3% 0 0 Yes Hard grass covered slope.
3 5 0 - - - Yes Firm grassy soil, hilly terrain.
1 1 2 0 2 14 No Soft earth with rocks and shrubs.
1 0 3 - - - Yes Heavily wooded hill.
0 0 4 - - - No Firm rocky soil with shrubs.
4 1 3 - - - Minor Firm soil, thin underbrush.
5% 5 (] 13% 0 0 Yes Hard grass covered soil,
5% 0 ¢ - - - Yes Golf course,
0 1 3 4 2 1 Yes Soft earth, slid onto concrete runway.
0 0 5 0 4 27 Yes Hard soil.
2 1 2 2 3 0 No Hit water, skipped twice and sank.
0 . 2 2 0 2 1 No Hard grassy soil,
5 1 0 1 1 0 Yes Trees and hard ground.
0 2 1 0 0 4 Yes Runway overrun into drainage ditch.

.J




APPENDIX I
MILITARY TRANSPORT ACCIDENTS IN WHICH SURVIVAL W/

AIRCRAFT ATTITUDE IMPACT CONDITIONS CREW INJURIES PASSENGER
Type Impact 'Il).:z:ll. Minor
Ref Air- Pitch Roll Yaw Velocity Angle Dist Total Seri- or Ser
No. craft Date (Deg.) (Deg.) (Deg.) (Kn.) (Deg.) (Ft.) Aboard Fatal ous None Fatal ous
1A C-47D 1962 30up 0 0 80 30 348 7 0 0 2 0 3
2A  C-47D 1962 20-30up 0 0 90-105 10-20 - 8 1+ 1 2 0 0
3A C-47A 1962 5-10up 60L - 60-70 5-10 200 7 3 0 0 4 0
4A  KC- 1962 5-10up 20L 9L 170-180 5 1000 6 6* 0 0 - -
135A
SA C-140 1962 2-3uyp 2-3R O 175 10-15 1000 6 2% 1 0 3* 0
6A C-121G 1962 Level 0 0 120 3-5 1900 8 3 5 0 - -
74  C-131E 1963 10-15up 20R 2-5R 123 = 12-15 300 20 1 1 2 0 2
8A KC- 1963 - 0 - 130-150 2.5 150 4 1 0 3 - -
135A
9A C-47D 1963 Llevel O 0 100-120 1-2 393 4 0 0 4 - -
10A C-123B 1964 2-5d 0 2-4L 70 10-15 300 8 4 1 3 - -
11A C-135B 1964 2-4up 2-3L. O 150 2-3 1640 83 5% 5 0 73% 0
12A KC-97G 1964 2-5d 10R - 120 2-5 1400 5 5% 0 0 - -
13A  KC-97G 1964 5-10up O 0 105 20-30 200 11 0 1 3 4 2
14A  VC-47D 1965 2-5up - - 70 2-3 350- 36 0 0 s 0 4
400
15A C-130A 1965 Level 1-5L 1-3rR 130 1-3 Water 10 2 1 2 2 3
16A C-123B 1965 Level 0 0 100 2-5 250 7 0 2 2 0 2
17N C-54Q 1964 5-10d SR - 130 5 380 8 5 1 0 1 1
18N fg-l- 1963 Level 0 10L 15-25 20-30 10-20 7 0 2 1 0 0
K

*All fatalities had elevated.CO-levels in blood samples.
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APPENDIX 11
IDENTS IN WHICH SURVIVAL WAS POSSIBLE

CREW INJURIES PASSENGER INJURIES
Minor Minor Post-
Seri- or Seri- or crash
Fatal ous None Fatal ous None Fire Terrain Conditions
0 0 2 0 3 2 No Frozen earth,
1% 1 2 0 0 4 Yes Frozen earth.
3 0 0 4 0 0 Yes Runway and firm grassy soil.
6* 0 0 - - - Yes Heavily wooded area.
2% 1 0 3% 0 0 Yes Hard grass covered slope.
3 5 0 - - - Yes Firm grassy soil, hilly terrain.
1 i 2 0 2 14 No Soft earth with rocks and shrubs.
1 0 3 - - - Yes Heavily wooded hill.
0 0 4 - - - No Firm rocky soil with shrubs.
4 1 3 - - - Minor Firm soil, thin underbrush.
5% 5 0 13% 0 0 Yes Hard grass covered soil.
5% 0 0 - - - Yes Golf course.
0 1 3 4 2 1 Yes Soft earth, slid onto concrete runway.
0 0 5 0 4 27 Yes Hard soil.
2 1 2 2 3 o No Hit water, skipped twice and sank.
0 2 2 0 2 1 No Hard grassy soil.
5 1 0 1 1 0 Yes Trees and hard ground.
0 2 1 0 0 4 Yes Runway overrun into drainage ditch.
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